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A Near-Resonance Solution to the Bloch Equations
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A near-resonance expansion of the solution to the Bloch equa-
tions in the presence of a radiofrequency (RF) pulse is presented in
this paper. The first-order approximation explicitly demonstrates
the nonlinear nature of the Bloch equations and precisely relates
the excitation profile with the RF pulse when the flip angle is less
than #/2. As an application of this solution, we present a proce-
dure for designing RF pulses to generate symmetric excitation
profiles with arbitrary shapes for new encoding approaches such
as wavelet encoding. © 1999 Academic Press
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nomenological description of an MRI system. A variety o
design algorithms and computer optimization techniques ha
been proposed in recent years. Warren and Silver's pdagr (
provides a review of earlier work. Referencd,(13 give a

list of latest results. However, these design algorithms a
targeted for specific profile shapes such as rectangular. Tt
are not suitable for RF pulse design to generate arbitrari
shaped excitation profiles. For example, the Shinnar-Le Ro
(SLR) algorithm (4) transforms the pulse design problem tc
the design of linear-phase finite impulse response digital filte

(FIR), which are bandpass filters for rectangular excitatic
profiles. Unfortunately, designs of such FIR with arbitran
frequency spectrum are extremely complicated and no spec
method is available for the general caskb)( The inverse
Magnetic resonance imaging (MRI) is a powerful tool fogcattering algorithmi@2, 16 requires that the desired magne
obtaining spatially localized information from nuclear magtization response be specified as a rational polynomial, i.e.,
netic resonance (NMR) of atoms within a sample. The COghe ratio of two polynomials. This is straightforward for well-
ventional Fourier transform approach to MRI contains thrgg,gun responses such as a selectiv@ pulse, an inversion
steps: slice-selective excitation, phase encoding, and frequelaayse, or am refocusing pulse. However, many desired re

encoding {). Recently, many new encoding approaches hawg,nses cannot be expressed as rational polynomials. Py
been developed and implemented as alternatives to phaseﬁg

1. INTRODUCTION

ign through computer optimization typically involves spec
coding. New encoding bases have also been found and use g g P P ypieaty P

. o ) ?lg a trial pulse shape and then adjusting the paramete
replace the Fourier basis in phase encoding. These basesurﬂﬂ the response fits the target profile as closely as possik

clude nonexclusively wavelet2£6), wavelet packetsy, 6), Though effective, computer optimization is nonintuitive an

windowed Fourier bases/(§), a local cosine basisd), and lacks efficiency. Moreover, it is unlikely to be suitable for the
bases derived from the Matching Pursuit (MP) algorithrf) Y- o y
QPral RF pulse design probleril).

These new encoding approaches have many advantages 8\?| hi bati . f the BI
the conventional Fourier approach. Higher imaging speed n this paper, a new perturbative expansion of the Bloc

suppression of motion artifacts, and capability for dynamff:duaﬁons is proposed that gives exact results for on-resonar
imaging are a few examples. In these approaches, transvé-fes first-order approximation expllletly demonstrates.t.he nol
excitation profiles are generated by RF pulses along a magndfigar nature of the Bloch equations. We then utilize thi
field gradient and shaped like the chosen encoding basis fufiglution to design RF pulses with flip angles up to 75°. Th
tions. This requires the design of linear phase or self-refocif&sign procedure is very simple and straightforward. Simul
ing RF pulses for a few specially shaped excitation profildi®ns of RF pulses for linear and cubic spline functions hay
with the maximum rotation angle equal @?2 so that the been carried out. The result shows that these linear-phase
highest signal-to-noise ratio (SNR) may be achieved. pulses generate excitation profiles very close to the desir

In order to design an RF pulse for a specific application, it @es. In addition, it also provides a very efficient and simpl
necessary to understand the relationship between the excitati®y to obtain an accurate solution of the Bloch equation
profile and the pulse shape. This relationship can be obtaingbich may be used as a forward calculation method for cor
from an analytical solution to the Bloch equations—the ph@uter optimization approaches to pulse design.
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2. SOLUTION OF THE BLOCH EQUATIONS My =M +ME + M2 + . .. 8]
In the rotating frame turning at frequenay, about the My = MG+ MT +MD+ - [9]
direction of B,, the main static magnetic field, we write the
Bloch equations 1) as After substituting these into Eqgs. [6] and [7], we obtain a set «

equations of various orders:

dM(r, t M,(r, t "
(O _ M )+AwMy(r,t) ] dmy

dt T2 gt = TAeMP +i0,(HReMT}, foralln=0
dMy(r, t) M,(r, t) [10]
=T~ AeM(r )+ QML b MO
2 z . .
[2] gt = 12u MY —idwReMG ), foralin=1
dM(r, ) My, t) — M(r) [11]
dt = = T]_ - le(t) My(rl t)! [3] dM(o)
gt = 12u M. [12]

whereAw = yG(t) - (r — r,) is the resonance offset afil, (t)

= yB,(t) is determined by the RF fielB,(t) applied in the With the initial conditionsM{)(r, 0) = M(r), M{(r, 0) =0

x-direction. r, is the center of the excitation ar@(t) is the for alln = 1, andM{(r, 0) = O for all n = 0, an iterative
linear magnetic field gradienk2(r) is the equilibrium value solution for anyte[0, 7,] is given by

of M,(r, t) giving the initial conditionsM,(r, 0) = M(r, 0)

= 0 and M,(r, 0) = M2(r). With Q(t) and Aw being Mg) = M%(r)e'® [13]

time-varying, the Bloch equations cannot be conveniently

solved in closed form. . . t . 00
In a usual case, the pulse length, is much shorter thai, My =e 1Qy,(7)Re[Mzy(7)}e!" dT,
andT,, and we may neglect the relaxation effects. In reality, 0
this assumption is assured in most MRI systerhig).(An foralln=0 [14]

expansion of the solution to the Bloch equations is developed
under this assumption. Let

t
ng = gle® J — iAw(T)Re{M(X?,_l)(f)}e’i“(”dﬂr,
0

My, = M(r, t) + iM(r, t) [4]
) foralln=1, [15]
M,, = M,(r, t) + iM(r, t), [5]
whered (t) = [(Aw(r)dt anda(t) = [, (7)dT are rotation
wherei = V—1. The Bloch equations are combined t@ngles caused by the magnetic field gradient and the RF pul

produce two complex equations:

dM,,
dt

M,,

dt

= —iAwM,, + iQ,()ReM,}

= iQ, () M,, — iAwREM,,}.

[6]

[7]

respectively. Whehw = 0, M) = M) = 0, for alln = 1.
Thus, M,, = MO = MXre“® and M,, = MY =
iM 2(r)sin(a(t)), which are exact solutions for on-resonance
This iterative solution may be viewed as an expansion
magnetization to the resonance offsét). Because the solu-
tions incorporate the effect diw in high order power and
exponential terms, this expansion converges very fast.
shown in Fig. 1, only the first two orders are needed to giv
accurate results for a 90° rectangular pulse in the resonar

WhenAw = 0, i.e., on-resonance, these two equations can bfset range {2, 2mx]. For pulses with greater flip angles,
easily solved with the given initial conditions. The solutiomigher order expansions are required to give accurate resu
shows that Rel,,} = 0, i.e.,, M, = 0. WhenAw # 0, an Figures 2 and 3 show the results for a 180° truncated sinc pu
expansion of the magnetization can be achieved. This maywsih only one sidelobe on both sides. A fifth-order expansio
called a near-resonance expansion. It gives accurate resisltshown for the longitudinal component of the magnetizatiol
over a resonance offset range centerediat= 0. On the M, and a fourth-order one for the transverse componés,

opposite end, Hoult's expansioh8) is based on low RF field and M,. Though higher-order expansion requires more con

approximation and thus gives accurate results wheris far

away from resonance. Let

putation, it generally leads to accurate results for a much wid
resonance offset range. In this example, it is at least wider th
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FIG. 1. Computation ofM, andM, for a 90° rectangular pulse.

[—5m, 57]. These figures clearly demonstrate that our neasther since they have different convergence ranges. Lastly, 1
resonance expansion converges over the range centefed afirst-order approximation in our case is nonlinear, whil
= 0. Compared to Hoult’'s expansion, it shows several advaeult’s leads to the well-known linear response theory. Whe
tages. First, it converges faster. Hoult’'s expansion requiregjaplied to RF pulse design, this nonlinear approximation in
third-order expansion for a 90° rectangular pulse to achieve theves the accuracy greatly over the linear response thet
same accuracy. Second, it converges over the range centerdd Bt This will be shown in the next section. Warren’s expan
on-resonance, which is a more interesting case. Our nesion of the effective Hamiltonian converges much faster ar
resonance expansion and Hoult's expansion compliment eaives reasonably good, though in some cases not very accur

1.6 T T T T T T T
180° truncated sinc pulse
1F -
- five—order expansion
+ true value
0.5} -
N
=
ofF .
-0.5} -1
_1 1 VN PR Y 1 1 1
-20 -15 -10 -5 5 10 16 20

AwT,
P

FIG. 2. Computation ofM, for a 180° sinc pulse.
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FIG. 3. Computation ofVl, andM, for a 180° sinc pulse.

results with only the first two orders. However, the effectivehat the function)’,(t) is related to the excitation profile at the

Hamiltonian cannot be applied to RF pulse design. end of the refocusing magnetic field gradient lobe by th
Of special interest is the first-order approximation for thimverse Fourier transform. If symmetry around= 7, is

transverse components of the magnetizathy, This expres- assumed(’,(t) can be explicitly expressed as

sion will be used later for RF pulse design:

e—iAwldAw,

2) " 2w iMO(r)

3
t T 1 1/2yGd Mxy( r, 2 Tp)
My = iM2(r)e "*® f Qy(7)cosa(r)e’ "dr. [16] &x(t + ) Ty
0 —1/2yGd
[19]
When the magnetic field gradient is constant, at the end of th

refocusing magnetic field gradient lob&), the transverse w%ereG ~ .|G|. andd |s.the W'.dth of e>I<C|tat|on prof|I_e along
magnetization is expressed as the magnetic field gradient. Sin€g),(t) is a real function and

MJ(r) is usually assumed uniform, it is required thd(r,
3 w2 37,) be a pure imaginary and symmetric function. For a rec
T . . . . . .
Mf}f)(r, 5 Tp) =iMor) J 'u( r4+ 2") e'*erdr [17] angular excitation profil€)’,(t) is shaped as a sinc function.
We see that the design task is to calcul@tg(t) from Q' (t)

—7pl 2
| using Eq. [18]. It can be rewritten as

Q4L(1) = le(t)cosf Qi (7)d7. [18]

: G —

cof[50,(r)d]’ 1201
This means that the transverse magnetization is proportional to the

Fourier transform ofQ,(t). When the RF field is very low, This is a complicated integral equation. Fortunately, we nee
Qi (t) — Q1) and thus Eq. [17] becomes the linear respons#ly a numerical solution and a recursive methdd®) (is
theory. Therefore, the first-order approximation may also Iselfficient for this purpose. The recursive relations are

viewed as a nonlinear generalization of the linear response theory.

QR = Qu(1), [21]
3. RF PULSE DESIGN ,
(n+1) _ le(t)
Given a transverse excitation profile, the design task is to Q37 = cod [LQW(r)d7]’ [22]

find an appropriately shaped RF pulse to be generated along N
with a constant magnetic field gradient. From Eq. [17] we see Q1) = QF). (23]
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FIG. 4. RF pulses for linear spline.

Although this iterative approach may not converge in all casesssociated wavelets are chosen as two sets of encoding b
our numerical simulation shows that it converges for flip anglésnctions when we implement wavelet-encoded MRI in oL
up to 75°. For the design of a 90° RF pulse, this convergenledoratory. The linear spline function is shrunk by 0.7 so th:
problem can be overcome by scaling a 75° pulse with a simildne flip angles of both pulses are close to 45°. The pulse leng
shape. Since sin(90°) is only slightly larger than sin(75°), we, is set to be 0.005120 s.
can obtain the 90° RF pulse without losing accuracy. The RF pulses from our design show a big difference in tf
As examples, we now design the RF pulses for linear splisecond half of the pulses. This is because within the first h:
and cubic spline function®(), which are used to generate theof excitation the rotation angle(t) is close to 0, and thus
semiorthogonal wavelets (Figs. 4 and 5). The splines and theos(x(t)) is approximately equal to 1. Simulations of pulse
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FIG. 5. RF pulses for cubic spline.
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FIG. 6. Simulation for linear spline.

shapes from the conventional design based on the linear re- 4. CONCLUSION

sponse theory and our new design are compared in Fig. 6 and

Fig. 7, respectively, for linear spline and cubic spline functions. We have derived a near-resonance expansion of the mag
Apparently, the pulses from the new design excite magnetizeation that is valid for a much larger range of flip angles an
tion profiles much closer to the desired ones. Since the exekact for on-resonance. Numerical simulations have been ¢
tation profile is very close to desired function, the perfected out and results agree with prediction very well. Th
reconstruction relationshi2Q) between the function and itsfirst-order approximation clearly demonstrates the nonlineari
dual is kept well when the function is replaced by the excitatiasf the Bloch equations and relates the transverse excitati
profile. This greatly increases the signal-to-noise of the MR¥ofile to )',(t), which is an integral function of),,(t). The
images. linear response theory is a special case of this first-oro

M@
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FIG. 7. Simulation for cubic spline.
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approximation whei),(t) — € ,(t). Using this new approx-

Imaging” (J. T. Dobbins and J. M. Boone, Eds.), pp. 133-140, SPIE,

imation, generic RF pulses can be designed with much greater San Diego (1998). _ o
accuracy. RF pulse designs for linear and cubic splines ha\?e G. Hossein-Zadeh and H. Soltanian-Zadeh, DCT acquisition and

also been carried out.

10.
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