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A near-resonance expansion of the solution to the Bloch equa-
ions in the presence of a radiofrequency (RF) pulse is presented in
his paper. The first-order approximation explicitly demonstrates
he nonlinear nature of the Bloch equations and precisely relates
he excitation profile with the RF pulse when the flip angle is less
han p/2. As an application of this solution, we present a proce-
ure for designing RF pulses to generate symmetric excitation
rofiles with arbitrary shapes for new encoding approaches such
s wavelet encoding. © 1999 Academic Press

Key Words: Bloch equations; RF pulse design; wavelet-
ncoding.

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a powerful tool
btaining spatially localized information from nuclear m
etic resonance (NMR) of atoms within a sample. The
entional Fourier transform approach to MRI contains th
teps: slice-selective excitation, phase encoding, and freq
ncoding (1). Recently, many new encoding approaches h
een developed and implemented as alternatives to pha
oding. New encoding bases have also been found and u
eplace the Fourier basis in phase encoding. These bas
lude nonexclusively wavelets (2–6), wavelet packets (5, 6),
indowed Fourier bases (7, 8), a local cosine basis (9), and
ases derived from the Matching Pursuit (MP) algorithm (10).
hese new encoding approaches have many advantage

he conventional Fourier approach. Higher imaging sp
uppression of motion artifacts, and capability for dyna
maging are a few examples. In these approaches, trans
xcitation profiles are generated by RF pulses along a mag
eld gradient and shaped like the chosen encoding basis
ions. This requires the design of linear phase or self-refo
ng RF pulses for a few specially shaped excitation pro
ith the maximum rotation angle equal top/2 so that the
ighest signal-to-noise ratio (SNR) may be achieved.
In order to design an RF pulse for a specific application,

ecessary to understand the relationship between the exc
rofile and the pulse shape. This relationship can be obt

rom an analytical solution to the Bloch equations—the p
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omenological description of an MRI system. A variety
esign algorithms and computer optimization techniques
een proposed in recent years. Warren and Silver’s pape11)
rovides a review of earlier work. References (12, 13) give a

ist of latest results. However, these design algorithms
argeted for specific profile shapes such as rectangular.
re not suitable for RF pulse design to generate arbitr
haped excitation profiles. For example, the Shinnar–Le R
SLR) algorithm (14) transforms the pulse design problem
he design of linear-phase finite impulse response digital fi
FIR), which are bandpass filters for rectangular excita
rofiles. Unfortunately, designs of such FIR with arbitr

requency spectrum are extremely complicated and no sp
ethod is available for the general case (15). The inverse

cattering algorithm (12, 16) requires that the desired mag
ization response be specified as a rational polynomial, i.e
he ratio of two polynomials. This is straightforward for we
nown responses such as a selectivep/2 pulse, an inversio
ulse, or ap refocusing pulse. However, many desired
ponses cannot be expressed as rational polynomials.
esign through computer optimization typically involves sp

fying a trial pulse shape and then adjusting the param
ntil the response fits the target profile as closely as pos
hough effective, computer optimization is nonintuitive a

acks efficiency. Moreover, it is unlikely to be suitable for
eneral RF pulse design problem (11).
In this paper, a new perturbative expansion of the B

quations is proposed that gives exact results for on-reson
he first-order approximation explicitly demonstrates the n

inear nature of the Bloch equations. We then utilize
olution to design RF pulses with flip angles up to 75°.
esign procedure is very simple and straightforward. Sim

ions of RF pulses for linear and cubic spline functions h
een carried out. The result shows that these linear-phas
ulses generate excitation profiles very close to the de
nes. In addition, it also provides a very efficient and sim
ay to obtain an accurate solution of the Bloch equati
hich may be used as a forward calculation method for c
uter optimization approaches to pulse design.
1090-7807/99 $30.00
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226 XU AND CHAN
2. SOLUTION OF THE BLOCH EQUATIONS

In the rotating frame turning at frequencyv0 about the
irection of B0, the main static magnetic field, we write t
loch equations (1) as

dMx~r , t!

dt
5 2

Mx~r , t!

T2
1 DvMy~r , t! [1]

dMy~r , t!

dt
5 2

My~r , t!

T2
2 DvMx~r , t! 1 V1x~t! Mz~r , t!

[2]

dMz~r , t!

dt
5 2

Mz~r , t! 2 M z
0~r !

T1
2 V1x~t! My~r , t!, [3]

hereDv 5 gG(t) z (r 2 r 0) is the resonance offset andV 1x(t)
gB1(t) is determined by the RF fieldB1(t) applied in the

-direction. r 0 is the center of the excitation andG(t) is the
inear magnetic field gradient.Mz

0(r ) is the equilibrium valu
f Mz(r , t) giving the initial conditions:Mx(r , 0) 5 My(r , 0)

0 and Mz(r , 0) 5 Mz
0(r ). With V 1x(t) and Dv being

ime-varying, the Bloch equations cannot be convenie
olved in closed form.
In a usual case, the pulse length,t p, is much shorter thanT1

ndT2, and we may neglect the relaxation effects. In rea
his assumption is assured in most MRI systems (17). An
xpansion of the solution to the Bloch equations is devel
nder this assumption. Let

Mxy 5 Mx~r , t! 1 iM y~r , t! [4]

Mzy 5 Mz~r , t! 1 iM y~r , t!, [5]

here i 5 =21. The Bloch equations are combined
roduce two complex equations:

dMxy

dt
5 2iDvMxy 1 iV1x~t!Re$Mzy% [6]

dMzy

dt
5 iV1x~t! Mzy 2 iDvRe$Mxy%. [7]

henDv 5 0, i.e., on-resonance, these two equations ca
asily solved with the given initial conditions. The solut
hows that Re{Mxy} 5 0, i.e., Mx 5 0. WhenDv Þ 0, an
xpansion of the magnetization can be achieved. This m
alled a near-resonance expansion. It gives accurate r
ver a resonance offset range centered atDv 5 0. On the
pposite end, Hoult’s expansion (18) is based on low RF fiel
pproximation and thus gives accurate results whenDv is far
way from resonance. Let
ly

,

d

be

be
ults

Mxy 5 M xy
~0! 1 M xy

~1! 1 M xy
~2! 1 · · · [8]

Mzy 5 M zy
~0! 1 M zy

~2! 1 M zy
~2! 1 · · · . [9]

fter substituting these into Eqs. [6] and [7], we obtain a se
quations of various orders:

dMxy
~n!

dt
5 2iDvM xy

~n! 1 iV1x~t!Re$M zy
~n!%, for all n $ 0

[10]

dMzy
~n!

dt
5 iV1x~t! M zy

~n! 2 iDvRe$M xy
~n21!%, for all n $ 1

[11]

dMzy
~0!

dt
5 iV1x~t! M zy

~0!. [12]

ith the initial conditionsMzy
(0)(r , 0) 5 Mz

0(r ), Mzy
(n)(r , 0) 5 0

or all n $ 1, andMxy
(n)(r , 0) 5 0 for all n $ 0, an iterative

olution for anyt[[0, t p] is given by

M zy
~0! 5 M z

0~r !eia~t! [13]

M xy
~n! 5 e2iu ~t! E

0

t

iV1x~t!Re$M zy
~n!~t!%eiu ~t!dt,

for all n $ 0 [14]

M zy
~n! 5 eia~t! E

0

t

2 iDv~t!Re$M xy
~n21!~t!%e2ia~t!dt,

for all n $ 1, [15]

hereu (t) 5 * 0
t Dv(t)dt anda(t) 5 * 0

t V 1x(t)dt are rotation
ngles caused by the magnetic field gradient and the RF p
espectively. WhenDv 5 0, Mxy

(n) 5 Mzy
(n) 5 0, for all n $ 1.

hus, Mzy 5 Mzy
(0) 5 Mz

0(r )eia(t) and Mxy 5 Mxy
(0) 5

M z
0(r )sin(a(t)), which are exact solutions for on-resonan

This iterative solution may be viewed as an expansio
agnetization to the resonance offset,Dv. Because the solu

ions incorporate the effect ofDv in high order power an
xponential terms, this expansion converges very fast
hown in Fig. 1, only the first two orders are needed to
ccurate results for a 90° rectangular pulse in the reson
ffset range [22p, 2p]. For pulses with greater flip angle
igher order expansions are required to give accurate re
igures 2 and 3 show the results for a 180° truncated sinc
ith only one sidelobe on both sides. A fifth-order expan

s shown for the longitudinal component of the magnetiza
z, and a fourth-order one for the transverse componentsMx

nd My. Though higher-order expansion requires more c
utation, it generally leads to accurate results for a much w
esonance offset range. In this example, it is at least wider
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227NEAR-RESONANCE SOLUTION TO BLOCH EQUATIONS
25p, 5p]. These figures clearly demonstrate that our n
esonance expansion converges over the range centeredDv

0. Compared to Hoult’s expansion, it shows several ad
ages. First, it converges faster. Hoult’s expansion requi
hird-order expansion for a 90° rectangular pulse to achiev
ame accuracy. Second, it converges over the range cent
n-resonance, which is a more interesting case. Our
esonance expansion and Hoult’s expansion compliment

FIG. 1. Computation ofMx a

FIG. 2. Computation
r-

n-
a

he
d at
ar-
ch

ther since they have different convergence ranges. Lastl
rst-order approximation in our case is nonlinear, w
oult’s leads to the well-known linear response theory. W
pplied to RF pulse design, this nonlinear approximation
roves the accuracy greatly over the linear response th
11). This will be shown in the next section. Warren’s exp
ion of the effective Hamiltonian converges much faster
ives reasonably good, though in some cases not very acc

y for a 90° rectangular pulse.

for a 180° sinc pulse.
ndM
ofM
 z
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228 XU AND CHAN
esults with only the first two orders. However, the effec
amiltonian cannot be applied to RF pulse design.
Of special interest is the first-order approximation for

ransverse components of the magnetization,Mxy. This expres
ion will be used later for RF pulse design:

M xy
~0! 5 iM z

0~r !e2iu ~t! E
0

t

V1x~t!cosa~t!eiu ~t!dt. [16]

hen the magnetic field gradient is constant, at the end o
efocusing magnetic field gradient lobe (1), the transvers
agnetization is expressed as

M xy
~0!S r ,

3

2
tpD 5 iM z

0~r ! E
2tp/ 2

tp/ 2

V91xS t 1
tp

2 DeiDvtdt [17]

V91x~t! 5 V1x~t!cosE
0

t

V1x~t!dt. [18]

his means that the transverse magnetization is proportional
ourier transform ofV91x(t). When the RF field is very low
91x(t) 3 V1x(t) and thus Eq. [17] becomes the linear respo

heory. Therefore, the first-order approximation may also
iewed as a nonlinear generalization of the linear response th

3. RF PULSE DESIGN

Given a transverse excitation profile, the design task
nd an appropriately shaped RF pulse to be generated
ith a constant magnetic field gradient. From Eq. [17] we

FIG. 3. Computation ofM
he

the

e
e
ry.

to
ng
e

hat the functionV91x(t) is related to the excitation profile at t
nd of the refocusing magnetic field gradient lobe by

nverse Fourier transform. If symmetry aroundt 5 t p is
ssumed,V91x(t) can be explicitly expressed as

V91xS t 1
tp

2 D 5
1

2p E
21/ 2gGd

1/ 2gGd MxyS r ,
3

2
tpD

iM z
0~r !

e2iDvtdDv,

[19]

hereG 5 uGu andd is the width of excitation profile alon
he magnetic field gradient. SinceV91x(t) is a real function an

z
0(r ) is usually assumed uniform, it is required thatMxy(r ,

t p) be a pure imaginary and symmetric function. For a r
ngular excitation profileV91x(t) is shaped as a sinc functio
e see that the design task is to calculateV 1x(t) from V91x(t)

sing Eq. [18]. It can be rewritten as

V1x~t! 5
V91x~t!

cos@* 0
t V1x~t!dt#

. [20]

his is a complicated integral equation. Fortunately, we n
nly a numerical solution and a recursive method (19) is
ufficient for this purpose. The recursive relations are

V 1x
~0!~t! 5 V91x~t!, [21]

V 1x
~n11!~t! 5

V91x~t!

cos@* 0
t V 1x

~n!~t!dt#
, [22]

V1x~t! 5 V 1x
~N!~t!. [23]

dMy for a 180° sinc pulse.
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229NEAR-RESONANCE SOLUTION TO BLOCH EQUATIONS
lthough this iterative approach may not converge in all ca
ur numerical simulation shows that it converges for flip an
p to 75°. For the design of a 90° RF pulse, this converg
roblem can be overcome by scaling a 75° pulse with a sim
hape. Since sin(90°) is only slightly larger than sin(75°)
an obtain the 90° RF pulse without losing accuracy.
As examples, we now design the RF pulses for linear s

nd cubic spline functions (20), which are used to generate
emiorthogonal wavelets (Figs. 4 and 5). The splines and

FIG. 4. RF pul

FIG. 5. RF pu
s,
s
ce
ar
e

e

eir

ssociated wavelets are chosen as two sets of encoding
unctions when we implement wavelet-encoded MRI in
aboratory. The linear spline function is shrunk by 0.7 so
he flip angles of both pulses are close to 45°. The pulse le
p, is set to be 0.005120 s.
The RF pulses from our design show a big difference in

econd half of the pulses. This is because within the first
f excitation the rotation anglea(t) is close to 0, and thu
os(a(t)) is approximately equal to 1. Simulations of pu

for linear spline.

for cubic spline.
ses
lses
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230 XU AND CHAN
hapes from the conventional design based on the line
ponse theory and our new design are compared in Fig.
ig. 7, respectively, for linear spline and cubic spline functi
pparently, the pulses from the new design excite magne

ion profiles much closer to the desired ones. Since the
ation profile is very close to desired function, the per
econstruction relationship (20) between the function and
ual is kept well when the function is replaced by the excita
rofile. This greatly increases the signal-to-noise of the

mages.

FIG. 6. Simula

FIG. 7. Simula
re-
nd
.
a-
ci-
t

n
I

4. CONCLUSION

We have derived a near-resonance expansion of the m
ization that is valid for a much larger range of flip angles
xact for on-resonance. Numerical simulations have been
ied out and results agree with prediction very well. T
rst-order approximation clearly demonstrates the nonline
f the Bloch equations and relates the transverse excit
rofile to V91x(t), which is an integral function ofV 1x(t). The

inear response theory is a special case of this first-o

for linear spline.

for cubic spline.
tion
tion
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231NEAR-RESONANCE SOLUTION TO BLOCH EQUATIONS
pproximation whenV91x(t) 3 V 1x(t). Using this new approx
mation, generic RF pulses can be designed with much gr
ccuracy. RF pulse designs for linear and cubic splines
lso been carried out.
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